Distributed K-Median Clustering with Application to Image Clustering
نویسندگان
چکیده
Developing algorithms suitable for distributed environments is important as data becomes more distributed. This paper proposes a distributed KMedian clustering algorithm for use in a distributed environment with centralized server, such as the Napster model in a peer-to-peer environment. Several approximate methods for computing the median in a distributed environment are proposed and analyzed in the context of the iterative K-Median algorithm. The proposed algorithm allows the clustering of multivariate data while ensuring that each cluster representative remains an item in the collection. This facilitates exploratory analysis where retaining a representative in the collection is important, such as imaging applications.
منابع مشابه
Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملFUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA
Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کامل